If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-10y=96
We move all terms to the left:
y^2-10y-(96)=0
a = 1; b = -10; c = -96;
Δ = b2-4ac
Δ = -102-4·1·(-96)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-22}{2*1}=\frac{-12}{2} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+22}{2*1}=\frac{32}{2} =16 $
| 3.84h=$.83 | | 1/5×3x=2+42 | | 4(d+2)-2d=0 | | 4r-3=18 | | y^2+20y=96 | | 7x+3=-20 | | -4x30=26 | | 92-w=188 | | 4w+28=-4w+12 | | 8x-24+8=5x-2 | | 7(x+5)=3(x+15) | | -m^2-2m+5=0 | | 6x/6=24/6 | | 6/5k+2/k-3=0 | | 5=w/2.2 | | (u+7)^2=2u^2+8u+54 | | 13m=32+5m | | 17^(-x-5)=14^(4x) | | 1/3(12-n)+n=36 | | 12+x/15+x=0.85 | | 90+2a+90+2a=180 | | x/2-x/3=1/3 | | 4/3=−8/3y | | Y+6=1/10x+10 | | 2.3x6.5=14.95 | | 3y+2y=17 | | 2x^2-x=276 | | 4y/8=16 | | z–(–0.3)=–2.4 | | 2/5x+1=4/5 | | 5h-(-17h)+3h+(-12)=13 | | -20-12y=90 |